Wednesday, 23 March 2016

Botany

Botany, also called plant science(s) or plant biology, is the science of plant life and a branch of biology. A botanist or plant scientist is a scientist who specializes in this field of study. The term "botany" comes from the Ancient Greek word βοτάνη (botanē) meaning "pasture", "grass", or "fodder"; βοτάνη is in turn derived from βόσκειν (boskein), "to feed" or "to graze".Traditionally, botany has also included the study of fungi and algae by mycologists and phycologists respectively, with the study of these three groups of organisms remaining within the sphere of interest of the International Botanical Congress. Nowadays, botanists study approximately 400,000 species of living organisms of which some 260,000 species are vascular plants and about 248,000 are flowering plants.

Botany originated in prehistory as herbalism with the efforts of early humans to identify – and later cultivate – edible, medicinal and poisonous plants, making it one of the oldest branches of science. Medieval physic gardens, often attached to monasteries, contained plants of medical importance. They were forerunners of the first botanical gardens attached to universities, founded from the 1540s onwards. One of the earliest was the Padua botanical garden. These gardens facilitated the academic study of plants. Efforts to catalogue and describe their collections were the beginnings of plant taxonomy, and led in 1753 to the binomial system of Carl Linnaeus that remains in use to this day.

In the 19th and 20th centuries, new techniques were developed for the study of plants, including methods of optical microscopy and live cell imaging, electron microscopy, analysis of chromosome number, plant chemistry and the structure and function of enzymes and other proteins. In the last two decades of the 20th century, botanists exploited the techniques of molecular genetic analysis, including genomics and proteomics and DNA sequences to classify plants more accurately.

Modern botany is a broad, multidisciplinary subject with inputs from most other areas of science and technology. Research topics include the study of plant structure, growth and differentiation, reproduction, biochemistry and primary metabolism, chemical products, development, diseases, evolutionary relationships, systematics, and plant taxonomy. Dominant themes in 21st century plant science are molecular genetics and epigenetics, which are the mechanisms and control of gene expression during differentiation of plant cells and tissues. Botanical research has diverse applications in providing staple foods, materials such as timber, oil, rubber, fibre and drugs, in modern horticulture, agriculture and forestry, plant propagation, breeding and genetic modification, in the synthesis of chemicals and raw materials for construction and energy production, in environmental management, and the maintenance of biodiversity.

Species

In biology, a species (abbreviated sp., with the plural form species abbreviated spp.) is one of the basic units of biological classification and a taxonomic rank. A species is often defined as the largest group of organisms in which two individuals are capable of reproducing fertile offspring, typically using sexual reproduction. While in many cases this definition is adequate, the difficulty of defining species is known as the species problem. For example, a species complex is a group of closely related species that are very similar in appearance to the point that the boundaries between them are often unclear. Differentiating measures include similarity of DNA, morphology, or ecological niche. Presence of specific locally adapted traits may further subdivide species into "infraspecific taxa" such as subspecies (and in botany other taxa are used, such as varieties, subvarieties, and formae).

Species hypothesized to have the same ancestors are placed in one genus, based on similarities. The similarity of species is judged based on comparison of physical attributes, and where available, their DNA sequences. All species are given a two-part name, a "binomial name", or just "binomial". The first part of a binomial is the generic name, the genus to which the species belongs. The second part is either called the specific name (a term used only in zoology) or the specific epithet (the term used in botany, which can also be used in zoology). For example, Boa constrictor is one of four species of the Boa genus. While the genus gets capitalized, the specific epithet does not. The binomial is written in italics when printed and underlined when handwritten.

A usable definition of the word "species" and reliable methods of identifying particular species are essential for stating and testing biological theories and for measuring biodiversity, though other taxonomic levels such as families may be considered in broad-scale studies. Extinct species known only from fossils are generally difficult to assign precise taxonomic rankings, which is why higher taxonomic levels such as families are often used for fossil-based studies.

The total number of non-bacterial and non-archaeal species in the world has been estimated at 8.7 million, with previous estimates ranging from two million to 100 million.

The Cambrian explosion,

The Cambrian explosion, or less commonly Cambrian radiation, was the relatively short evolutionary event, beginning around 542 million years ago in the Cambrian period, during which most major animal phyla appeared, as indicated by the fossil record. Lasting for about the next million years, it resulted in the divergence of most modern metazoan phyla. Additionally, the event was accompanied by major diversification of other organisms. Prior to the Cambrian explosion,most organisms were simple, composed of individual cells occasionally organized into colonies. Over the following 70 to 80 million years, the rate of diversification accelerated by an order of magnitude and the diversity of life began to resemble that of today. Many of the present phyla appeared during this period,with the exception of Bryozoa, which made its earliest known appearance in the Lower Ordovician.

The Cambrian explosion has generated extensive scientific debate. The seemingly rapid appearance of fossils in the “Primordial Strata” was noted as early as the 1840s,and in 1859 Charles Darwin discussed it as one of the main objections that could be made against the theory of evolution by natural selection. The long-running puzzlement about the appearance of the Cambrian fauna, seemingly abruptly and from nowhere, centers on three key points: whether there really was a mass diversification of complex organisms over a relatively short period of time during the early Cambrian; what might have caused such rapid change; and what it would imply about the origin of animal life. Interpretation is difficult due to a limited supply of evidence, based mainly on an incomplete fossil record and chemical signatures remaining in Cambrian rocks.

Phylogenetic analysis has been used to support the view that during the Cambrian radiation, metazoans evolved monophyletically from a single common ancestor: flagellated colonial protists similar to modern choanoflagellates.